Skip to content

Example 3: spinodal decomposition

Files

Statement of the problem

This test corresponds to the 2D simulation of spinodal decomposition proposed on PFhub

The domain Ω\Omega is a square [0,200]×[0,200][0,200]\times[0,200]

ϕt=MΔμ in Ωμ=F(ϕ)λΔϕ in Ω \begin{align} \frac{\partial \phi}{\partial t}&= M\Delta \mu \text{ in }\Omega \\[6pt] \mu &= F'(\phi) - \lambda \Delta \phi \text{ in }\Omega \end{align}

where ϕ\phi is the phase indicator, μ\mu the generalized chemical potential and FF' the derivative against ϕ\phi of the potential FF defined by:

F(ϕ)=ω(ϕ0.3)2(0.7ϕ)2. \begin{align} F(\phi)&=\omega(\phi - 0.3)^2 (0.7 - \phi)^2. \end{align}

Initial condition

The initial condition is defined by:

ϕ=0.5+0.01[cos(0.105x)cos(0.11y)+(cos(0.13x)cos(0.087y))2+cos(0.025x0.15y)cos(0.07x0.02y)] \phi = 0.5 + 0.01 \left[\cos(0.105x)\cos(0.11y) +(\cos(0.13x)\cos(0.087y))^2+ \cos(0.025x - 0.15y)\cos(0.07x - 0.02y)\right]

SpinodalDecomposition
Figure 1: initial state

Parameters used for the test

For this test, the following parameters are considered:

Name Description Symbol Value
mob mobility coefficient MϕM_\phi 5.05.0
lambda energy gradient coefficient λ\lambda 2.02.0
omega depth of the double-well potential ω\omega 5.05.0

Boundary conditions

Neumann boundary conditions are prescribed on the boundary of the domain:

nλϕ=0 on Ωnλμ=0 on Ω \begin{align} {\bf{n}} \cdot{} \lambda \nabla \phi&=0 \text{ on }\partial\Omega \\[6pt] {\bf{n}} \cdot{} \lambda \nabla \mu&=0 \text{ on }\partial\Omega \end{align}

Numerical scheme

  • Time integration: Euler Implicit over the interval t[0,10]t\in[0,10] (it could be extended further) with a time-step δt=1\delta t=1
  • Spatial discretization: uniform grid with N=100N=100 nodes in each spatial direction
  • Newton solver: relative tolerance 101210^{-12}, absolute tolerance 101210^{-12}
  • Iterative solver: HYPRE_GMRES
  • Preconditioner: HYPRE_ILU

Results

The average value of ϕ\phi is an available ouput of the simulation (see the file time_specialized.csv). It is defined by:

1ΩΩϕdv \dfrac{1}{|\Omega|}\displaystyle\int_{\Omega} \phi dv

For this test, the computed average value should remain constant over time.

The figure 2 shows the spinodal decomposition, with a final simulation time set to 1000010000.

SpinodalDecomposition
Figure 2 : spinodal decomposition

Figure 3 shows the time evolution of the normalized free-energy density, with snapshots taken at 100100, 10001000 and 1000010000 s.

SpinodalDecomposition
Figure 3 : time evolution of the normalized density of free energy