Skip to content

Example 1: coalescence of two bubbles

Files

Statement of the problem

This test corresponds to a 2D simulation of coalescence of two kissing bubbles.

The domain Ω\Omega is a square [0,2π]×[0,2π][0,2\pi]\times[0,2\pi]

ϕt=Δμ in Ωμ=F(ϕ)λΔϕ in Ω \begin{align} \frac{\partial \phi}{\partial t}&= \Delta \mu \text{ in }\Omega \\[6pt] \mu &= F'(\phi) - \lambda \Delta \phi \text{ in }\Omega \end{align}

where ϕ\phi is the phase indicator, μ\mu the generalized chemical potential and FF' the derivative against ϕ\phi of the potential FF defined by:

F(ϕ)=ϕ44ϕ22 \begin{align} F(\phi)&=\frac{\phi^4}{4} - \frac{\phi^2}{2} \end{align}

Initial condition

The initial condition consists of two bubbles:

ϕ={1,if (xπ+1)2+(yπ)2<1    or    (xπ1)2+(yπ)2<11,otherwise \phi = \begin{cases} 1, & \text{if } (x - \pi + 1)^2 + (y - \pi)^2 < 1 \;\; \text{or} \;\; (x - \pi - 1)^2 + (y - \pi)^2 < 1 \\ -1, & \text{otherwise} \end{cases}

KissingBubbles
Figure 1 : two kissing bubbles at initial state

Parameters used for the test

For this test, all parameters are equal to one except the energy gradient coefficient.

Name Description Symbol Value
mob mobility coefficient MϕM_\phi 1.01.0
lambda energy gradient coefficient λ\lambda 4.1044.10^{-4}
omega depth of the double-well potential ω\omega 1.01.0

Boundary conditions

Neumann boundary conditions are prescribed on the boundary of the domain:

nλϕ=0 on Ωnλμ=0 on Ω \begin{align} {\bf{n}} \cdot{} \lambda \nabla \phi&=0 \text{ on }\partial\Omega \\[6pt] {\bf{n}} \cdot{} \lambda \nabla \mu&=0 \text{ on }\partial\Omega \end{align}

Numerical scheme

  • Time integration: Euler Implicit over the interval t[0,0.5]t\in[0,0.5] (it could be extended further) with a time-step δt=0.05\delta t=0.05
  • Spatial discretization: uniform grid with N=128N=128 nodes in each spatial direction
  • Newton solver: relative tolerance 101010^{-10}, absolute tolerance 101410^{-14}
  • Iterative solver: HYPRE_GMRES
  • Preconditioner: HYPRE_ILU

Results

The average value of ϕ\phi is an available ouput of the simulation (see the file time_specialized.csv). It is defined by:

1ΩΩϕdv \dfrac{1}{|\Omega|}\displaystyle\int_{\Omega} \phi dv

For this test, the computed average value should remain constant over time.

The figure 2 shows the coalescence of the two bubbles, with a final simulation time set to 5050.

KissingBubbles
Figure 2 : coalescence two kissing bubbles